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Over recent decades, it has become clear that the extraction of fluids from underground res-
ervoirs can be linked to seismicity and aseismic deformation around producing fields. Using
a simple model with uniform fluid extraction from a reservoir, Segall (1989, “Earthquakes
Triggered by Fluid Extraction,” Geology, 17(10), pp. 942–946) illustrated how poroelastic
stresses resulting from fluid withdrawal may be consistent with earthquake focal mecha-
nisms surrounding some producing fields. Since these stress fields depend on the spatial
gradient of the change in pore fluid content within the reservoir, both quantitative and qual-
itative predictions of the stress changes surrounding a reservoir may be considerably
affected by assumptions in the geometry and hydraulic properties of the producing zone.
Here, we expand upon the work of Segall (1989, “Earthquakes Triggered by Fluid Extrac-
tion,”Geology, 17, pp. 942–946 and 1985, “Stress and Subsidence Resulting From Subsur-
face Fluid Withdrawal in the Epicentral Region of the 1983 Coalinga Earthquake,”
J. Geophys. Res. Solid Earth, 90, pp. 6801–6816) to provide a quantitative analysis of
the surrounding stresses resulting from fluid extraction and diffusion in a horizontal reser-
voir. In particular, when considering the diffusion of fluids, the spatial pattern and magni-
tude of imposed stresses is controlled by the ratio between the volumetric rate of fluid
extraction and the reservoir diffusivity. Moreover, the effective reservoir length expands
over time along with the diffusion front, predicting a time-dependent rotation of the
induced principal stresses from relative tension to compression along the ends of the pro-
ducing zone. This reversal in perturbed principal stress directions may manifest as a rota-
tion in earthquake focal mechanisms or varied sensitivity to poroelastic triggering,
depending upon the criticality of the pre-existing stress state and fault orientations,
which may explain inferred rotations in principal stress directions associated with some
induced seismicity. [DOI: 10.1115/1.4047034]
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Introduction
Induced seismicity is a topic of growing scientific interest and

societal importance, particularly surrounding practices in resource
extraction and waste disposal [1–4]. Many processes considered
surrounding induced seismicity focus on solid–fluid interactions
governing fault strength and stress. Much attention has been
focused on the direct effects of fluid injection and increasing pore
pressure in decreasing the effective normal stress across fault sur-
faces and potentially destabilizing faults under their preexisting
stress conditions [3,5–17]. However, there is continued evidence
for the presence of seismicity and aseismic deformation caused
by the extraction of pore fluids, particularly in oil and gas fields
where pore pressures may be declining by up to several 10s of
MPa [18–29].
Segall [30] proposed that the poroelastic stresses resulting from

fluid withdrawal can be responsible for triggering earthquakes in
producing fields on their own. A key aspect highlighted within
his work is that the strain mismatch due to reservoir rocks contract-
ing more than their surroundings generates stresses in areas where
no changes in the pore-fluid content occur. Segall [30] produced
stress field solutions encompassing a relatively simple reservoir

geometry assuming a uniform change in fluid mass content along
a horizontal layer. The resulting fields illustrate that, as fluid is
extracted, the overlying and underlying layers experience relative
horizontal contraction and the neighboring regions on the flanks
of the producing zone experience relative tension. Such solutions
predict a preference for reverse faulting above and below the pro-
ducing layer and normal faulting on the flanks of the producing
zone, which is qualitatively consistent with observed seismicity
around several producing fields (e.g., Goose Creek, Wilmington,
Buena Vista Hills, Alberta, and Pau). One drawback of the solutions
presented by Segall [30] is the existence of stress discontinuities at
the edges of the reservoir due to the gradient in the change in fluid
mass content being undefined at the boundaries of the producing
region. Steep gradients in the change in the pore fluid content
result in local stress concentrations, and the finiteness of the result-
ing solutions depend on the continuity of the fluid distributions
[30,31]. As such, quantitative as well as qualitative predictions
for the surrounding stresses caused by fluid extraction and injection
may be substantially affected by basic assumptions in the geometry
and hydraulic properties of the producing region.
The particular two-dimensional (2D) problem for fluid extraction

from an infinite horizontal layer with uniform diffusivity was intro-
duced by Segall [32], accounting for the smooth temporal evolution
of the change in fluid content through diffusion. However, while
considering the effects of varying diffusivity on surface subsidence,
he mainly focused on induced stress changes well below the pro-
ducing zone in order to estimate the stresses imposed on the 1983
Coalinga fault by oil field operations, which is several factors
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deeper than the corresponding production depth. Since seismicity
can also often be observed in the layers overlying and surrounding
the producing or injection zone, the focus in this study is to expand
the analyses of Segall [30,32] to examine the evolution of the stress
field directly surrounding the producing zone in a reservoir includ-
ing the smooth temporal evolution of the pore fluid distribution
through diffusion. While the fixed reservoir model of Segall [30]
was shown to qualitatively agree well with patterns in surface defor-
mation and seismicity surrounding reservoirs with potentially com-
parable reservoir geometries, we note that the particular example of
a laterally unconstrained reservoir with a finite diffusivity may be
more quantitatively applicable to other producing fields where
changes in fluid mass may not be considered uniform within the
producing region (e.g., central Oklahoma [15], North and South
Dakota [33], and Groningen [34]). Moreover, for many reservoir
settings, the timescale for fluid transport (days to years) within
the producing layer may be comparable to the timescale of field
observations at relevant distances. For such cases, it may be impor-
tant to account for the nonstationarity of the geometry of the effec-
tive producing zone when interpreting field measurements and
seismological inferences [15,35,36]. For example, numerical
models have illustrated how the temporal evolution of pore pressure
and poroelastic stresses due to fluid injection and diffusion can help
explain temporal trends in the productivity of triggered seismicity,
depending on pre-existing fault geometries and background stress
conditions [37].
The aim of this study is to provide an additional reference model

that illustrates the potential importance of considering the nonstatio-
narity of fluid sources when interpreting field observations, and
from which exact calculations may be made for quantitative com-
parison with field data. This model may also serve as a benchmark
problem for more complicated numerical studies. While more
sophisticated numerical methods have been applied for detailed
studies of some well-instrumented reservoirs in which the geometry
and hydraulic properties are better constrained, we hope that these
relatively simple solutions may prove useful in regions with
limited reservoir data. In order to further facilitate such compari-
sons, we provide two potential approximate extensions to 3D for
relevant production quantities such as the volumetric flowrate. In
addition, we briefly discuss the implications of our model results
for existing field observations and seismological studies, including
inferred temporal variations in the principal stress directions of
seismic events around injection wells [38–40].

Model Description
Segall [32] showed that for a linear, isotropic poroelastic

medium, the solid displacements uj due to distributed changes in
fluid mass content Δm(y, t) can be expressed through a linear inte-
gral relationship over the source volume Vy as

u j(x, t) =
(1 + νu)B

3πρ0(1 − νu)

∫
V
Δm(y, t)g j(x, y)dVy (1)

where νu is undrained Poisson’s ratio, B is Skempton’s pore pres-
sure coefficient, and ρ0 is the fluid density in the reference state.
The function gj(x, y) represents the displacement in the j direction
at x due to a point center of dilatation at y with associated change
in fluid mass content Δm(y, t)dV. Note that y and x denote the
full position vectors for the source and receiver elements, respec-
tively. The total displacement uj(x, t) due to quasi-static changes
in a distributed fluid mass at time t is then obtained by integrating
the undrained point fluid mass changes within the region for
which Δm(y, t) is non-zero.
The change in the fluid mass content is defined as the change in

fluid mass per unit solid volume and can be related to the mean solid

stress σkk and pore fluid pressure p as

Δm =
(1 − 2νu)αρ0
2μ(1 + νu)

σkk +
3
B
p

[ ]
(2)

where α relates the bulk modulus of the fluid-saturated rock under
drained conditions, K, and that of the solid rock, Ks, as α= 1−K/Ks

[41]. Stresses may be related to the displacements and associated
strains through the linear isotropic poroelastic constitutive relation-
ship

2μϵij = σij −
νu

1 + νu
σkkδij +

2μB
3ρ0

Δmδij (3)

such that the stress distribution due to the integrated source is
given by

σij(x, t) =
μ(1 + νu)B

3πρ0

∫
V
Δm(y, t)Gij(x, y)dVy −

BKu

ρ0
Δm(y, t)δij

(4)

where μ is the shear modulus and Ku is the undrained bulk modulus
[32]. Solutions for displacements and stresses due to the change in
fluid mass within a distributed volume can therefore be represented
through integral expressions of the prescribed change in the fluid
mass content and the poroelastostatic Green’s functions Gij(x, y)
and gj(x, y) which have been presented by Segall [32] and included
within the Appendix. Note that in this work, we express solutions
for displacements and stresses due to changes in the fluid mass
content and do not attempt to solve for the associated pore pressures
within the reservoir. However, pore pressure distributions within
the producing zone may be calculated from the change in pore
fluid mass and the associated solutions for the mean solid stress
through Eq. (2) [32].

Models for the Fluid Mass Distribution. Segall [30] examined
the 2D poroelastic stress field and surface displacements caused by
fluid extraction from a horizontal, permeable layer of thickness T,
which was assumed small compared to the reservoir depth D,
and enclosed in an otherwise impermeable half-space (Fig. 1(a)).
Δm(y, t) is considered uniform over a horizontal interval −a< y1
< a, as well as with depth D < y2 <D+ T, reflecting a producing
layer of fixed length 2a and thickness T. The specific case where
a=D was examined by Segall [30], which we also consider in
this study for direct comparison. We set the net mass flux out of
the producing zone −Q to be constant for time t> 0 and zero for t
< 0, and thus can express this uniform change in the fluid mass dis-
tribution as a function of the mass flux and time simply as

Δmf (x, t) = −
Qt

2a
B(x1; −a, a)B(x2; D, D + T) (5)

where B(x; ζ1, ζ2) refers to the boxcar function over x from ζ1 and
ζ2. We denote this mass distribution asΔmf(x, t) and will henceforth
refer to it as the fixed reservoir model. Note that Q reflects the
change in fluid mass per unit time and cross-sectional area trans-
verse to x1, considering a uniform distribution over T and an addi-
tional length scaleW not explicitly modeled here out-of-plane along
x3. Two key features of this model are that the reservoir geometry is
fixed with length 2a and the temporal evolution of the fluid mass
distribution neglects the finite timescale for fluid migration
toward the extraction site at x1= 0. In essence, the fixed reservoir
model reflects extraction from a geometrically constrained reservoir
with effectively infinite internal diffusivity, allowing for instanta-
neous equilibration of the fluid mass distribution upon further
fluid extraction or injection.
In order to account for the redistribution of fluid mass due to dif-

fusion, we consider the case introduced by Segall [32] of an infinite
horizontal layer of thickness T and diffusivity c, similarly buried at a
depth of D in an otherwise impermeable medium. The spatio-
temporal evolution of the fluid mass distribution within the infinite
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layer is then governed by the one-dimensional diffusion equation

∂Δm(x, t)
∂t

= c
∂2Δm(x, t)

∂x21
(6)

with the local fluid mass flux q subject to the boundary conditions

q(x1 = 0+) − q(x1 = 0−) = −Q, t > 0

q(x1 = ±∞) = 0, t > 0

Accounting for diffusion with respect to the plane at x1= 0, the fluid
mass change per unit solid volume can be expressed as [42]

Δmd(x, t) = −Q
t

c

( )1/2
ierfc

x21
4ct

( )1/2
[ ]

B(x2; D, D + T) (7)

for t> 0, where ierfc[x] =
�x
0erfc[x]dx = e−x

2
/π1/2 − xerfc[x] is the

first integral of the complementary error function. Here, we
denote the mass distribution accounting for fluid diffusion as
Δmd(x, t) and refer to it as the diffusive model (Fig. 1(b)).
In contrast to the fixed reservoir model given by Eq. (5), the dif-

fusive model does not contain a fixed reservoir length scale. Instead
one can consider an effective producing zone length approximately
equal to the diffusion length ld =

����
4ct

√
, which describes the spatial

extent to which the change in fluid mass concentration due to
extraction has propagated with time. Note here that T is assumed
small compared to D and ld such that the mass distribution is con-
sidered uniform with depth inside the reservoir. This assumption
is that T< ld breaks down as t→ 0 during the onset of fluid extrac-
tion. However, we will primarily focus on timescales where t
approaches or is greater than a reference diffusion timescale, td=
D2/4c, based on the reservoir depth, and thus where ld ≳ D > T ,
such that this approximation is more appropriate. Assuming a reser-
voir depth of 1 km, values for td would be around 2.9 days after the
onset of extraction for a hydraulic diffusivity of 1 m2/s and 29 days
for a diffusivity of 0.1 m2/s, which represent moderate values of rel-
atively high and low diffusivities for production fields, respectively
[32]. Since the diffusion length scale increases with the square root

of time, ld approaches 10% of D when t is only at 1% of td, meaning
that the effective reservoir length is within one order of magnitude
of the reservoir depth much earlier than the corresponding reference
diffusion timescale.
In considering only the stress distribution outside of the reservoir,

where Δm(x, t)= 0, Eq. (4) reduces to

σij(x, t) = C

∫
V
Δm(y, t)Gij(x, y)dVy (8)

where C= μ(1+ νu)B/3πρ0(1− νu), such that the stresses in the fixed
reservoir model (Eq. (5)) are

σij(x, t) =
CQt

2

∫
V
Gij(x, y)dVy (9)

and those for the diffusive model (Eq. (7)) are

σij(x, t) = CQ
t

c

( )1/2∫
V
ierfc

y21
4ct

( )1/2
[ ]

Gij(x, y)dVy (10)

Full expressions for the stresses and displacements for both distribu-
tions are presented in the Appendix where full closed form solutions
may be expressed for the fixed reservoir model while the diffusive
model includes an integral over the horizontal layer which may be
computed numerically.
An important distinction between Eqs. (9) and (10) is the tempo-

ral dependence of the stress fields. The fixed reservoir solutions are
separable in space and time such that while the total change in the
fluid mass content increases over time, it is always evenly distribu-
ted over the reservoir length 2a, thereby increasing the magnitude of
the same spatial distribution. For the diffusive case, the spatial dis-
tribution of the fluid mass is coupled to the temporal evolution with
respect to the inception of extraction or injection. In such a manner,
as the total change in the fluid content increases over time, the
spatial extent over which this contribution is distributed also
grows with the effective diffusion length scale ld, such that the con-
centration of the change in the fluid mass content is not geometri-
cally fixed throughout time. We explore the implications of the

(a) (b)

Fig. 1 Model geometry (top) and distributions for the change in fluid mass content (bottom) for the fixed reservoir model (a) as
described in Ref. [30] and the diffusive reservoir model (b) as described in Ref. [32]. The half-width of the fixed reservoir is
assumed to be equal to the reservoir depth. Fluidmass content distributions for the diffusive reservoirmodel are shown at increasing
times with relation to the characteristic diffusion timescale, td. The spatial distributions of the fluid mass change are scaled by the
total mass content divided by twice the reservoir depth.
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spatio-temporal evolution of the effective producing zone in the
“Results” section.

Results
We consider the cases of fluid extraction from a single site in both

the fixed and diffusive reservoir models and examine the spatial dis-
tributions of the displacements and stresses surrounding the reser-
voirs, as well as the temporal evolution of these fields in the case
of the diffusive model. Figure 2 compares the surface displacements
and horizontal strain as well as the horizontal normal stress σ11 and
maximum shear stress fields (τ = [(σ11 − σ22)2/4 + σ212]

1/2) caused
by fluid extraction (stresses positive in tension) from the fixed
(Fig. 2(a)) and diffusive (Figs. 2(b)–2(d )) reservoir models. The
results for the fixed model are the same as those presented by
Ref. [30]. Three cases are shown for the diffusive model with
hydraulic diffusivities varying by an order of magnitude c= 0.1
cD, c= cD, and c= 10 cD about the reference diffusivity cD. Each
diffusive case is calculated at the same time t= td=D2/4cD. All
four examples are scaled to represent instances where the total
extracted fluid volume is the same, but the spatial extent and con-
centration varies based on the reservoir geometry and diffusivity.
Simulated focal mechanisms in each case illustrate planes of
maximum shear stress (ϕ = 1

2 tan
−1[(σ22 − σ11)/(2σ12)]) with black

regions denoting quadrants of relative tension and white for quad-
rants of relative compression, with respect to each representative
point. The spatial distribution of the surface displacements and
extensional strain are qualitatively similar among the fixed and dif-
fusive models shown in Fig. 2, but they differ quantitatively in both
magnitude and localization, reflecting the intensity of the gradient in
the change in fluid mass within each reservoir. As pointed out by
Segall [32], the surface expressions depend strongly on the hydrau-
lic diffusivity with more pronounced subsidence for lower diffusiv-
ities and relatively small and broadly dispersed subsidence for high
diffusivities. Solutions for the fixed reservoir model are most similar
to the diffusive model in Fig. 2(c) which has a similar effective pro-
ducing zone half-length of ld=D; however, vertical displacements
are 8%more pronounced near the extraction site at x1= 0 for the dif-
fusive model along with a 32% increase in the horizontal exten-
sional strain (see Figs. 2(a) and 2(c)). Note that the relative
contraction and broadening of the surface expressions for the
cases where c= 0.1 cD and c= 10 cD, respectively, are also consis-
tent with the time-dependent evolution of the effective reservoir
length.

Geometric and Temporal Dependence of Stress
Concentrations. An important conclusion about the reservoir
geometry is that the intensity of imposed stresses due to injection
or extraction depends on the spatial gradient of the change in
fluid mass content, such that higher stress concentrations are
located around regions with sharper gradients in Δm. This is
evident in the fixed reservoir model where discontinuities in the
fluid mass distribution at the ends of the producing zone introduce
large stress concentrations near the edges of the reservoir
(Fig. 2(a)). In the case of the diffusive model, a stress concentration
is focused about the extraction site at x1= 0 due to the localized
extraction of fluid, whereas the smooth decay of the distribution
away from this point precludes the concentration of stresses else-
where (Figs. 2(b)–2(d )). This stress concentration at x1= 0 is not
present in the uniform model as the fluid distribution is assumed
to equilibrate rapidly to provide a uniform change in fluid mass
content across the reservoir.
In the diffusive model, the intensity of this stress concentration

near the extraction point at any given time is a function of the
rate of fluid extraction and the reservoir diffusivity, and is governed
by the ratio of the volume flux into or out of the reservoir to the rate
at which fluid can diffuse away or toward the loading point. For
lower diffusivities, the same change in fluid mass is more sharply
localized near the injection or extraction point resulting in more

concentrated stresses (Fig. 2(b)). For higher diffusivities, sharp gra-
dients in the change in fluid mass are alleviated more rapidly,
thereby mitigating stress concentrations and resulting in smoother
stress distributions (Fig. 2(d )). This emphasizes the significance
of the reservoir diffusivity in determining the rate at which concen-
trated stresses induced by fluid extraction or injection can be
relieved.
A more intuitive relationship may be made in terms of the volu-

metric rate of fluid extraction V̇ . We consider two simple approxi-
mations to extend our 2D model results to three dimension (3D).
For case 1, we assume a fixed producing zone width W in the x3
direction, and in case 2, W is assumed to scale with the producing
zone length in time. We consider the mass flux per effective produc-
ing zone length defined by the diffusion length scale,
Q/4

��
ct

√
= Ṁ/AT , where Ṁ is the average rate of total fluid mass

extraction and A is the horizontal area of the producing zone in
the x1 × x3 plane. In case 1, the area can be described as A =
4

��
ct

√
W with the volumetric rate of extraction V̇ = Ṁ/ρ0, giving

the relation Q/ρ0 = V̇/WT for the effective volume flux, as in
Ref. [32]. Alternatively, in case 2, the producing zone width may
be considered to scale with the length through time as W = γ

��
ct

√
for t > 0, where γ is a positive constant. The area then is given by
A= 4γct and the effective volume flux is Q/ρ0 = V̇/πγ

��
ct

√
T .

Accordingly, the prefactor (1 + νu)BQ/3πρ0
����
t/c

√
for the displace-

ments and stresses associated with the diffusive model becomes
(1 + νu)BV̇/3πWT

����
t/c

√
for case 1 and (1 + νu)BV̇/3π2γcT for

case 2. Here, the trade-off between the volumetric rate of fluid
extraction and the diffusivity of the reservoir becomes more appar-
ent, particularly in case 2 where the assumed linear increase in
extracted fluid volume with time is compensated exactly by the
linear increase in the effective producing zone volume. In this
case, the prefactor has no temporal dependence, but the spatial dis-
tribution of the deformation and stress fields are still coupled to the
temporal evolution of the effective producing zone volume. While
the 2D solutions are exact, these extensions to 3D provide only
crude approximations meant to facilitate quantitative comparison
with field measurements. The solutions for the special case of an
exactly axisymmetric mass distribution have been introduced by
Segall [31].
Figure 3 shows the temporal evolution of the spatial distributions

of the horizontal normal stress and maximum shear stress in the dif-
fusive reservoir model throughout time. Stresses are normalized by
(μ(1 + νu)BT/6πρ0D(1 − νu))(Qt/

����
4ct

√
) to reflect the balance

between the increasing change in total extracted fluid volume, as
well as the increase in the effective producing zone volume with
the extension of the diffusion length scale. This normalization
factor can also be replaced with the approximate 3D prefactors
introduced in the previous section. In particular for case 2, this nor-
malization coefficient becomes μ 1 + νu( )BV̇/12π2(1 − νu)γcD such
that the scaling is independent of time and the amplitude depends
linearly on the ratio of V̇ and c. We see that the stress concentration
near the extraction site decreases as the producing zone expands and
Δm becomes smoother and more evenly distributed. Additional dis-
tributions of the horizontal and vertical normal stresses as well as
the shear stresses at similar points in time for the diffusive model
are shown in Fig. 4.

Rotation of Principal Stress Directions. A notable feature in
Figs. 2 and 3 is that the orientation of the maximum shear stress
at a given location, illustrated by the simulated focal mechanisms,
is not static but rotates over time as the reach of the diffusion
front advances. For example, in Fig. 3, the simulated mechanisms
at the outer edges for both x1=±3.5 D and x2= 0.25 D rotate
from horizontal relative tension to compression between the
panels for t= 10 td and t= 100 td. The temporal evolution of the
angle of maximum extensional stress θ and angle of maximum
shear stress ϕ is shown in Fig. 5 as functions of the lateral distance
from the extraction axis at representative depths of 0.25 D and 0.5
D. As the front of the producing zone expands away from the
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extraction point, the angle of maximum extensional stress change
rotates such that points further away from the extraction site experi-
ence a reversal from relative horizontal tension to compression. The
angle of maximum shear stress correspondingly rotates from around
−π/4 to π/4, indicative of a transition from preferred normal faulting
to reverse faulting. This is generally consistent with the trend of
expected reverse faulting above and below the producing layer
and normal faulting at the flanks of the producing layer, as discussed
by Segall [30]. However, as the spatial extent of the producing zone
grows with time, the preferred mechanism of seismicity at a given
location may evolve as the surrounding region transitions into a
state of compression. The temporal evolution of the magnitude
and direction of the stresses at the locations highlighted in Fig. 5
are included in the Appendix (see Figs. 7 and 8).
Due to the interaction of the stress field with the free surface, the

timing of the stress rotations varies slightly with depth but may be
estimated given knowledge of the reservoir depth and diffusivity, as
well as the depth and distance from the extraction site for the loca-
tion of interest (Fig. 6). For a depth of interest around one-half of the
reservoir depth, the timescale about which one would expect a tran-
sition to relative horizontal compression would be t≈ td and t≈ 5.6
td for lateral locations of x1=D and x1= 2D, respectively. Consid-
ering a reservoir at 1 km depth and a diffusivity of c= 1 m2/s, this
gives approximate timescales for stress reversal between 1 and 2
km from the extraction site of approximately 3–16 days following
initiation of extraction. For lower diffusivities, this window can
be much broader. For instance, with a diffusivity of c= 0.1 m2/s
for otherwise similar considerations, the time window for stress
reversal between 1 and 2 km from the extraction site becomes
roughly 29–145 days, potentially providing a more substantial
observation window.

Depending on how the reservoir area scales with time, the mag-
nitude of the stress perturbations may be expected to grow as fluid is
continuously extracted. Therefore, the significance of the stress
reversal depends on the diffusivity of the reservoir, as well as the
ambient stress conditions before extraction. For a given time
since initiation of pumping, the orientation of the stress perturbation
depends on the diffusivity of the reservoir (Fig. 2). For reservoirs
with higher diffusivities, locations surrounding the extraction
site may experience the rotation in the perturbed stress before
the perturbations achieve any notable magnitude. In contrast,
lower diffusivities concentrate the change in fluid mass, allowing
for more substantial stress perturbations as the diffusion front
propagates.
A lower bound for the magnitude of stress perturbations can be

estimated in the case that the reservoir length and width scale
roughly equivalently over time so that the amplitudes of stresses
are independent of time (case 2, γ= 1). Assuming values of μ=
10GPa, B= 0.6, D= 1 km, and V̇ = 106 m3/year, the scaling for
the distributions in Figs. 3 and 4 would be approximately 3.2 and
32 kPa for c= 1 and c= 0.1 m2/s, respectively. If we consider a
point at 750m depth and 1.75 km away from the extraction site,
the horizontal normal stress perturbation would correspond to a
transition from an extensional stress perturbation of 12.8 kPa at
tD = 29 days for c= 0.1 m2/s to a compressive perturbation of
−30 kPa after 289 days. For context, such values are roughly an
order of magnitude larger than tidal stresses, typically on the
order of 1 kPa, and 0.1% of the potential effective confining stresses
around 1 km depth of 15–20MPa, assuming lithostatic overburden
minus hydrostatic pore fluid pressure. The relative significance of
such poroelastic perturbations depends heavily on the orientation
and existing stress state of faults, including the presence of pore

(a)

(b)

(c)

(d)

Fig. 2 Calculated displacements and horizontal extensional strain at the surface (left), change in horizontal normal stress
(center) and maximum shear stress (right) due to fluid extraction (relative tension positive) in both the (a) box-car model and
(b)–(d) diffusionmodels for varying hydraulic diffusivity with respect to cD at time t= td, where td=D2/4cD. Note that the convention
for x2 is switched for vertical surface displacements such that negative displacements reflect subsidence. Stresses are contoured
outside the producing layer for the diffusive models (x2∈ [D, D+T ]). Simulated focal mechanisms indicate planes of maximum
shear stress, with arrows indicating the axes of maximum tension and compression. Displacements are normalized by (1+ νu)
BTQt/3πρ0D, strains by (1+ νu)BTQt/3πρ0 D

2 and stresses by μ(1+ νu)BTQt/6πρ0D
2(1− νu).
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fluid overpressure within the fault gouge which can substantially
alter the effective confining stress acting on faults.

Discussion and Conclusions
We have expanded upon the analyses presented by Segall

[30,32], considering the spatio-temporal evolution of the poroelas-
tic response surrounding fluid extraction from a laterally uncon-
strained horizontal reservoir. We have examined the implications
of allowing for the time-dependent spatial evolution of the effective
producing zone due to fluid diffusion, in comparison to assuming a
fixed producing geometry. Distinctions arise as the intensity of the
poroelastic response is influenced by the spatial gradient of the
change in fluid mass content within the reservoir with substantial
stress concentrations emerging around sharp gradients in Δm.
Strong gradients in Δm would be expected surrounding the extrac-
tion site as well as any discontinuities in the reservoir geometry or
permeability structure. In the particular case considered here with a

uniform diffusivity, sharp gradients would be expected to be allevi-
ated over time due to fluid diffusion, but heterogeneity within the
geometric or hydrological structure of the producing layer may
result in growing stress concentrations over time as the change in
fluid mass within the producing zone increases. A potentially
important consideration not incorporated within this model is the
possible temporal evolution of the permeability structure within
the reservoir, particularly if stresses grow large enough to fracture
the surrounding rock. In such a case, there is the possibility that
stress concentrations due to structural or permeability irregularities
may be smoothed out over time. Overall, the capability for the res-
ervoir to mitigate stress concentrations depends on the hydraulic
diffusivity with respect to the volumetric extraction rate where rel-
atively high diffusivities allow for the timely redistribution of pore
fluid.
For many reservoir settings, the timescale of fluid transport

within the producing layer may be comparable to the timescale
for which field observations and seismological studies are made
at relevant distances. For these cases, it may be important to

Fig. 3 Change in horizontal normal stress (left) andmaximum shear stress (right) due to fluid extraction (relative tension positive) for
diffusion models with progressing time relative to the characteristic diffusion timescale td=D2/4c. Stresses are contoured outside
the producing zone (x2∈ [D, D+T ]). Simulated focal mechanisms indicate planes of maximum shear stress, with arrows indicating
the axes of maximum tension and compression, and stresses are normalized by μ (1+ νu) BTQ/12πρ0D(1− νu)

����
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(a)

(b)

(c)

(d)

(e)

Fig. 4 Extensional and shear stresses due to fluid extraction for diffusion models for progressing time relative to the
characteristic diffusion timescale (relative tension positive) in both the (a) fixed reservoir model of Segall [30] and
(b)–(e) diffusion models for progressing time relative to the characteristic diffusion timescale. Stresses are normalized
for (a) by μ(1+ νu)BTQt/6πρ0D

2(1− νu) and for (b)–(e) by μ (1+ νu) BTQ/12πρ0D(1− νu)
����
t/c

√

Fig. 5 Temporal evolution of the angle of maximum shear stress ϕ (left) and angle of maximum extensional stress θ (right)
as a function of lateral distance from the extraction site at x1=0 for representative depths x2=0.25 D (top) and x2=0.5 D
(bottom). Note that the rotation of the maximums shear stress angle from −π/4 to π/4 coincides with the rotation of the hor-
izontal stress from relative tension to compression.
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account for the nonstationarity of the geometry of the producing
zone when interpreting field measurements. Moreover, the magni-
tude and distribution of surface expressions depend on the
balance between the volumetric rate of extraction and the rate at
which changes in fluid content can be redistributed through diffu-
sion. Therefore, measurements of the spatio-temporal evolution of
surface displacements and strains associated with fluid extraction
and injection can allow for the inference of reservoir properties,
such as the reservoir diffusivity and thickness.
As introduced by Segall [30], the spatial distribution of stress

fields resulting from fluid extraction from a horizontal layer is con-
sistent with reverse faulting above and below the producing zone
and normal faulting along the flanks of the reservoir. However, for
a laterally unconstrained reservoir, the effective length of the pro-
ducing zone is not fixed in time and the progression of the produc-
ing front away from the extraction site results in a time-dependent
rotation of the planes of maximum imposed shear stress as the
stress regime transitions from relative horizontal tension to com-
pression above and below the producing layer. This alone may
predict that the preferred mechanism of associated seismicity at
a given location transitions from normal faulting to reverse fault-
ing as the effective length of the producing zone increases. In con-
trast, for fluid injection, one may expect a transition from reverse
faulting to normal faulting, as inferred for seismicity between
2014 and 2015 in the Crooked Lake and Rocky Mountain
House areas in Alberta, Canada, following decades of injection
[43]. However, it is important to note that this reflects only a
change in polarity of the stress perturbation and not the absolute
stress levels around the reservoir, whereas the likelihood of trig-
gered seismicity also depends on the criticality of the pre-existing
stress conditions as well as the distribution and orientation of
available faults. Rather than a visible change in focal mechanism,
the stressing conditions may instead transition from favorable to
unfavorable conditions, or vice-versa, depending upon the orienta-
tion of existing faults and pre-existing stress state [37]. While
general faulting mechanisms may remain consistent, the spatio-
temporal evolution of the poroelastic stress field as the effective
reservoir expands may be detectable through temporal rotations
in the principal stress directions of recorded seismicity, such as
those inferred from stress inversions of seismicity in The
Geysers geothermal field, California, and the Soultz-sous-Forêts
enhanced geothermal system [38–40]. Finally, the stress state sur-
rounding the producing field would also be expected to evolve
over time due to stress redistribution from earthquakes as well
as aseismic slip within the surrounding region [16,17,35].
Overall, developing a better understanding of the spatio-temporal

evolution of seismicity and their focal mechanisms may provide
additional constraints on the geometry and hydraulic properties
of the producing zone [36,38–40,44].
While exploring the conditions for the triggering of seismic and

aseismic slip events is beyond the scope of this work, the potential
measurement of such temporal transitions in earthquake focal
mechanisms or remote activation or deactivation of seismicity
may provide constraints on the criticality of regional stress levels.
We emphasize the value in the solutions presented by Segall
[30–32] and in this work, in providing reference models for
which exact calculations may be made for quantitative comparison
with field data. Moreover, these solutions may prove useful as ref-
erence solutions for more sophisticated numerical methodologies.
The 2D solutions presented here are exact, and we have discussed
two approximate extensions to 3D in order to facilitate direct com-
parison with field measurements and production data, which should
be interpreted with care. Finally, while we have focused on the case
of fluid extraction whereQ < 0, this analysis may also be considered
for the case of fluid injection and diffusion where Q> 0. Conve-
niently, the distributions for displacements and stresses will be
similar to those shown in this work with only a change in sign
due to their linear relationship with the net mass flux Q.

Acknowledgment
Matlab functions for the displacement and stress kernels pre-

sented in the Appendix and used in this study can be found on
Github.2

Nomenclature
a = horizontal half-width of the reservoir
c = hydraulic diffusivity
p = pore fluid pressure
q = local fluid mass flux
t = time
u = displacement vector
x = receiver position vector
y = source position vector
B = Skempton’s pore pressure coefficient
D = depth to the top of the reservoir
Q = net mass flux from the producing region
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Fig. 6 Lateral spatio-temporal propagation of reversal from relative horizontal compression to tension at two representative
depths of x2= 0.25 D (solid) and x2=0.5 D (dashed)

2https://github.com/vlambert/ReservoirStresses
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T = vertical thickness of the reservoir
V = source volume
ld = diffusion length scale
td = diffusion time scale
Ku = undrained bulk modulus
δij = Kronecker delta

Δm = change in the fluid mass content
ϵ = strain tensor
μ = shear modulus
νu = undrained Poisson’s ratio
ρ0 = fluid density in the reference state
σ = stress tensor
j = subscript denoting component of vector quantity

Appendix: Two-Dimensional Poroelastic Solutions
Segall [32] presented quasi-static solutions for the displacement

and stress fields due to changes in the fluid mass content within
an infinitesimal volume dV for a 2D linear isotropic poroelastic half-
space. In this study, we calculate these fields resulting from a
uniform change in the fluid content given by Eq. (5), as well as
the time-dependent distribution resulting from fluid diffusion
given by Eq. (7), by convolving the distributions with the poroelas-
tic Green’s functions provided in the Appendix of Ref. [32]. Here,
we present these solutions again for completeness.
For the general quasi-static problem of fluid extraction from a

half plane, the relation for the solid particle displacements can be
expressed in the form

u j(x, t) =
C(y, t)

μ
g j(x, y) (A1)

where gj(x, y) is the displacement in the j direction at x due to a
point center of dilatation at y with associated change in the fluid
mass content Δm(y, t)dV:

g1(x, y) =
1
2

x1 − y1
r21(x, y)

+
(3 − 4νu)(x1 − y1)

r22(x, y)
−
4x2(x2 + y2)(x1 − y1)

r42(x, y)

[ ]
(A2)

g2(x, y) =
1
2

x2 − y2
r21(x, y)

+
2x2 − (3 − 4νu)(x2 + y2)

r22(x, y)
−
4x2(x2 + y2)2

r42(x, y)

[ ]
(A3)

The prefactor C(y, t)= (μB(1+ νu)/3πρ0(1− νu))Δm(y, t)dV has
units of force related to the fluid mass source in the infinitesimal
volume dV. Here, u1(x) and u2(x) refer to horizontal and vertical dis-
placements, respectively, and r21(x, y) = (x2 − y2)2 + (x1 − y1)2 and
r22(x, y) = (x2 + y2)2 + (x1 − y1)2 reflect the source-receiver dis-
tances to the true mass source and the image source associated
with the free surface at x2= 0. Note that y and x denote the full
position vectors for the source and receiver elements, respectively.
The poroelastic stresses caused by points of dilatation may also be
calculated from Hooke’s law in the form σij(x, t)=C(t)Gij(x, y)
where

Gij =
∂gi
∂x j

+
∂g j

∂xi
+

2νu
1 − 2νu

∂gk
∂xk

δij (A4)

giving [32]

G11(x, y)=
(x2 − y2)2 − (x1 − y1)2

r41(x, y)
+
(x2 + y2)(3y2 − x2)− 3(x1 − y1)2

r42(x, y)

+
16x2(x2 + y2)(x1 − y1)2

r62(x, y)
(A5)

G22(x, y)=
(x1 − y1)2 − (x2 − y2)2

r41(x, y)
+
(5x2 + y2)(x2 + y2)− (x1 − y1)2

r42(x, y)

−
16x2(x2 + y2)(x1 − y1)2

r62(x, y)
(A6)

G12(x, y)=−
2(x1 − y1)(x2 − y2)

r41(x, y)
−
2(x1 − y1)(3x2 + y2)

r42(x, y)

+
16x2(x2 + y2)2(x1 − y1)

r62(x, y)
(A7)

Surface Displacements and Strain Due to Distributed Mass
Sources. The total displacement due to changes in a distributed
fluid mass at time t can be obtained by integrating the undrained
changes in fluid mass within the region for which Δm(y, t) is
non-zero according to Eq. (1). Solutions for the surface displace-
ments and horizontal strains resulting from the fixed reservoir
mass distribution given by Eq. (5) can be expressed as

u1(x, t) =
(1 + νu)BTQt

6πρ0a
log

1 + ξ2+
1 − ξ2−

( )
(A8)

u2(x, t) =
(1 + νu)BTQt

3πρ0a
tan−1 ξ−

( )
− tan−1 ξ+

( )[ ]
(A9)

ϵ11(x, t) =
(1 + νu)BTQt

3πρ0aD
ξ+

ξ2+ + 1
−

ξ−
ξ2− + 1

[ ]
(A10)

where ξ−= x1− a/D and ξ+= x1+ a/D [30]. For the diffusive source represented by Eq. (7), the corresponding solutions can be expressed as
Eqs. (A11)–(A13), where M(y1, t) = (1/

��
π

√
) exp −y21/4ct

( )
− |y1|/2

��
ct

√
erfc |y1|/2

��
ct

√( )[ ]
. The integral over y1 can be computed numeri-

cally for the diffusive source.

u1(x, t) =
2(1 + νu)BQ

3πρ0

��
t

c

√ ∫
M(y1, t) tan−1

D + T

x1 − y1

( )
− tan−1

D

x1 − y1

( )( )
dy1 (A11)

u2(x, t) =
(1 + νu)BQ

3πρ0

��
t

c

√ ∫
M(y1, t) log

(x1 − y1)2 + D2)

(x1 − y1)2 + (D + T)2

( )
dy1 (A12)
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ϵ11(x, t) =
(1 + νu)TBQ

3πρ0

��
t

c

√ ∫
M(y1, t)

D(D + T) − (x1 − y1)2

(D2 + (x1 − y1)2)((D + T)2 + (x1 − y1)2)

( )
dy1 (A13)

Stresses Due to Distributed Mass Sources. The stress distributions resulting from the distributed source may also be represented
through linear integral relations with the poroelastic Green’s functions Gnm(x, y). By considering the stress distributions only outside of
the reservoir, where Δm(y, t)= 0, these expressions simplify to the form of Eq. (8). Fully analytical expressions for the stress fields asso-
ciated with the fixed reservoir mass distribution represented by Eq. (5) can be solved as

σij(x, t) =
μ(1 + νu)B
3πρ0(1 − νu)

∫
V

Qt

2a
Gij(x, y)dVy =

μ(1 + νu)BQt
6πρ0a(1 − νu)

∫D+T
D

∫a
−a
Gij(x1, x2; y1, y2)dy1dy2 (A14)

These solutions are separable in space and time and can be expressed as σij(x, t)= (μ(1+ νu)BQt/6πρ0a(1− νu))Kij(x), where the kernels Kij

are expressed as Eqs. (A15)–(A17) [30].

K11(x) = tan−1
x2 − (D + T)

x1 − a

( )
− tan−1

x2 − (D + T)
x1 + a

( )
+ tan−1

x2 − D

x1 + a

( )
− tan−1

x2 − D

x1 − a

( )

+ 3 tan−1
x2 + (D + T)

x1 + a

( )
− tan−1

(
x2 + (D + T)

x1 − a

)
+ tan−1

x2 + D

x1 − a

( )
− tan−1

x2 + D

x1 + a

( )( )

+ 4ax2
a2 − x21 + (x2 + D + T)2

((x1 − a)2 + (x2 + D + T)2)((x1 + a)2 + (x2 + D + T)2)
−

a2 − x21 + (x2 + D)2

((x1 − a)2 + (x2 + D)2)((x1 + a)2 + (x2 + D)2)

( )
(A15)

K22(x) = tan−1
x2 − (D + T)

x1 + a

( )
− tan−1

x2 − (D + T)
x1 − a

( )
+ tan−1

x2 − D

x1 − a

( )
− tan−1

x2 − D

x1 + a

( )

+ tan−1
x2 + (D + T)

x1 + a

( )
− tan−1

x2 + (D + T)
x1 − a

( )
+ tan−1

x2 + D

x1 − a

( )
− tan−1

x2 + D

x1 + a

( )

+ 4ax2
a2 − x21 + (x2 + D)2

((x1 − a)2 + (x2 + D)2)((x1 + a)2 + (x2 + D)2)
−

a2 − x21 + (x2 + D + T)2

((x1 − a)2 + (x2 + D + T)2)((x1 + a)2 + (x2 + D + T)2)

( )
(A16)

K12(x) =
1
2

log (x1 − a)2 + (x2 − (D + T))2
( )

− log (x1 − a)2 + (x2 − D)2
( )[

+
16ax1x2(x2 + D)

(x1 − a)2 + (x2 + D)2
( )

(x1 + a)2 + (x2 + D)2
( ) − 16ax1x2(x2 + D + T)

(x1 − a)2 + (x2 + D + T)2
( )

(x1 + a)2 + (x2 + D + T)2
( )

+ (x1 − a)2 + (x2 − D)2
( )

(x1 + a)2 + (x2 + D)2
( ) log ((x1 + a)2 + (x2 − D)2)

(x1 − a)2 + (x2 + D)2
( )

(x1 + a)2 + (x2 + D)2
( )

(

+
log ((x1 − a)2 + (x2 + D)2)

(x1 − a)2 + (x2 + D)2
( )

(x1 + a)2 + (x2 + D)2
( ) − log ((x1 + a)2 + (x2 + D)2)

(x1 − a)2 + (x2 + D)2
( )

(x1 + a)2 + (x2 + D)2
( )

)

− (x1 − a)2 + (x2 − D − T)2
( )

(x1 + a)2 + (x2 + D + T)2
( )

×
log ((x1 + a)2 + (x2 − D − T)2)

(x1 − a)2 + (x2 + D + T)2
( )

(x1 + a)2 + (x2 + D + T)2
( )

(
+

log ((x1 − a)2 + (x2 + D + T)2)

(x1 − a)2 + (x2 + D + T)2
( )

(x1 + a)2 + (x2 + D + T)2
( )

−
log ((x1 + a)2 + (x2 + D + T)2)

(x1 − a)2 + (x2 + D + T)2
( )

(x1 + a)2 + (x2 + D + T)2
( )

)]
(A17)

Solutions resulting from the diffusive mass source represented by Eq. (7) can be expressed similarly, however, the spatio-temporal evo-
lution of the stress fields are coupled due to the time-dependence of the fluid diffusion process

σij(x, t) = C

∫
V
Q

t

c

( )1/2
ierfc

y21
4ct

( )1/2
[ ]

Gij(x, y)dVy = CQ
t

c

( )1/2∫D+T
D

∫∞
−∞

ierfc
y21
4ct

( )1/2
[ ]

Gij(x1, x2; y1, y2)dy1dy2 (A18)

where C= μ(1+ νu)B/3πρ0(1− νu). Individual stress components can be expressed as σij(x, y, t)= μ(1+ νu)BQ/3πρ0(1− νu)(t/c)1/2 Jij(x, y,
t), where the kernels Jij expressed in Eqs. (A18)–(A19) can be computed numerically.

J11(x, y, t) =
∫
M(y1, t)

x2 + 3D

(x1 − y1)2 + (x2 + D)2
+

4x2(x1 − y1)2

(x1 − y1)2 + (x2 + D)2
−

x2 − D

(x1 − y1)2 + (x2 − D)2

[

−
x2 + 3(D + T)

(x1 − y1)2 − (x2 + D + T)2
−

4x2(x1 − y1)2

(x1 − y1)2 + (x2 + D + T)2
+

x2 − D + T

(x1 − y1)2 + (x2 − D − T)2

]
dy1 (A19)
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J22(x, y, t) = 4x22

∫
M(y1, t)

D(x22 + 3(x1 − y1)2) + x2(x22 + (x1 − y1)2) − x2D2 − D3

(x1 − y1)2 + (x2 − D)2
( )

(x1 − y1)2 + (x2 + D)2
( )2

[

−
(D + T)(x22 + 3(x1 − y1)2) + x2(x22 + (x1 − y1)2) − x2(D + T)2 − (D + T)3

(x1 − y1)2 + (x2 − D − T)2
( )

((x1 − y1)2 + x2 + D + T)2
( )2

]
dy1 (A20)

J12(x, y, t) = 4x2

∫
(x1 − y1)M(y1, t)

2D(x1 − y1)2 + x2(x22 + (x1 − y1)2) + x2D2 + 2D3

((x1 − y1)2 + (x2 − D)2)((x1 − y1)2 + (x2 + D)2)2

[

−
2(D + T)(x1 − y1)2 + x2(x22 + (x1 − y1)2) + x2(D + T)2 + 2(D + T)3

((x1 − y1)2 + (x2 − D − T)2)((x1 − y1)2 + (x2 + D + T)2)2

]
dy1 (A21)

The spatial distribution of the horizontal and vertical normal
stresses, σ11 and σ22, respectively, as well as the shear stress σ12
for the fixed reservoir and diffusive models is shown in Fig. 4.
The temporal evolution of these three stress components as a

function of lateral distance from the extraction site is shown in
Fig. 7, where one can note the transition between relative horizontal
tension to compression at each site. The amplitudes of the associ-
ated principal stresses and maximum shear stresses are given in
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Fig. 7 Temporal evolution of the horizontal σ11 and vertical σ22 normal stresses and shear stress σ12 as a
function of lateral distance from the extraction site at x1=0 for the representative depth x2=0.25D. Stresses
are normalized by μ (1+ νu) BTQ/12πρ0D(1− νu)
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Fig. 8. For distances beyond x1= 2D, an inflection is noticeable in
the maximum shear stress which coincides with the transition from
relative horizontal tension to compression. The lateral progression
of the reversal front to relative compression is shown in Fig. 6 for
representative depths of x2= 0.25 D and x2= 0.5 D. As the effective
producing zone expands as ld ∝

�
t

√
, the propagation of the reversal

front is faster early on at locations closer to the extraction point but
decreases at further distances.
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